Кольцевые сердечники карбонильного железа фирмы AMIDON.

Маркировка кольцевых сердечников, выполненных из карбонильного железа, состоит из буквы **T**, далее (по аналогии с ферритовыми сердечниками) через дефис следуют две или три цифры - внешний диаметр кольца в сотых долях дюйма. В маркировку иногда добавляют букву **A**, обозначающую вариант исполнения с большей высотой кольца. Далее вслед за типом кольца через дефис добавляют марку материала (одну или две цифры), из которого изготовлено кольцо. Изделия из карбонильного железа имеют цветовую маркировку.

Например: **T-50-41** кольцо с внешним внешний диаметр около 0,5 дюйма (1,3 см) изготовленный из материала марки 41.

В таблице 4 - приведены размеры кольцевых сердечников переведенные в миллиметры:

Магнитопровод	Внешний	Внутрений	Высота,
	диаметр, мм	диаметр,мм	ММ
T-12	3,2	1,6	1,3
T-16	4,1	2	1,5
T-20	5,1	2,2	1,8
T-25	6,3	3	2,4
T-30	7,8	3,8	3,3
T-37	9,5	5,2	3,3
T-44	11	5,8	4
T-50	13	7,6	4,8
T-68	18	9,4	4,8
T-80	20	13	6,4
T-94	24	14	7,9
T-106	27	14	11
T-130	33	20	11
T-157	40	24	14
T-184	47	24	18
T-200	51	32	14
T-200A	51	32	25
T-225	57	36	14
T-225A	57	36	25
T-300	76	49	14
T-300A	76	49	25
T-400	100	57	17
T-400A	100	57	25
T-500	130	78	20

Коды материалов и соответствующие цветовые обозначения, а также оптимальные частотные диапазоны приведены в таблице 4.

Карбонильн ое железо	Начальная магнитная проницаемо сть	Рекомендуе мая частотная полоса, МГц	Цвет маркировки
0	1	100300	Коричневый
1	20	0,55	Синий
2	10	230	Красный
3	35	0,050,5	Серый
6	8	1050	Желтый
7	9	335	Белый
10	6	30100	Черный
12	4	50200	Зеленый + Белый
15	25	0,12	Белый + Красный
17	4	20200	Желтый + Синий
26	75	<1	Желтый + Белый

Материал используемый при производстве указанных выше сердечников, представляет собой смесь нескольких материалов. Ниже представлена более подробная информация некоторых наиболее часто применяемых смесей:

Смесь 1 -

Цветовая маркировка - **голубая.** Это материал с магнитными свойствами очень близок к смеси 3. Магнитная проницаемость u=20. Эта смесь в сравнении с номером 3 обладает более стабильными магнитными параметрами. Оптимальный частотный диапазон применения находится между 0.5 и 5 МГц.

Смесь 2 -

Цветовая маркировка - **красная.** Магнитная проницаемость u=10. На изделиях из этой смеси можно создавать контура с высокой добротностью в диапазоне от 2 до 20 МГц. Диапазон применения от 0.5 до 30 МГц. Наиболее часто употребляется в радиолюбительских коротковолновых устройствах.

Смесь 3 -

Цветовая маркировка - **серая.** Магнитная проницаемость u=35. Очень высокая стабильность параметров. Диапазон применения от 50 кГц до 0.5 МГц.

Смесь 6 -

Цветовая маркировка - **желтая**. Магнитная проницаемость u=8. Очень высокая температурная стабильность магнитных параметров. Применяется в диапазоне частот от 20 до 50 МГц.

Смесь 10 -

Цветовая маркировка - **черная.** Магнитная проницаемость u=6. Высокая стабильность магнитных параметров. Применяется для изготовления высокодобротных контуров в диапазоне от 40 до 200 МГц.

Смеси 12 и 17 -

Цветовые маркировки соответственно - **зелено-белая** и **голубая-желтая.** Магнитная проницаемость обеих смесей u=4. Средняя стабильность магнитных параметров. При изготовлении контуров с высокой добротностью в диапазоне от 50 до 200 МГц лучше применять смесь 12. У смеси номер 17 повышенная стабильность параметров.

Сердечники на основе распыленного железа могут успешно применяться в качестве магнитопроводов в различной

- низкочастотных выходных дросселей постоянного тока
- дросселей корректоров мощности
- резонансных индуктивностей
- входных фильтрах шумов
- накопительных дросселях