SIMID series, SIMID 0603-C

B82496C

SMD

Size 0603 (EIA) and/or 1608 (IEC)
Rated inductance 1 ... 220 nH
Rated current 110 ... 1800 mA

Construction

Copper-plated ceramic core

- Laser-cut winding, epoxy-coated

Features

- Temperature range up to $+150^{\circ} \mathrm{C}$
- High resonance frequency
- Close inductance tolerance
- Free of polarization effect
- High mechanical stability
- Qualified to AEC-Q200
- Suitable for lead-free reflow soldering as referenced in JEDEC J-STD 020D
- RoHS-compatible

Applications

Resonant circuits, impedance matching for

- Multimedia
- Car access systems
- Wireless communication systems
- TPMS (Tire Pressure Monitoring System)
- GPS (Global Positioning System)
- Digital cameras

Terminals

- Base material $\mathrm{Al}_{2} \mathrm{O}_{3}$ ceramic with Cu layer
- Layer composition Ni, Sn (lead-free)
- Electro-plated

Marking

- No marking on component
- Minimum data on reel:

Manufacturer, ordering code, L value, quantity, date of packing

Delivery mode and packing unit
■ 8-mm cardboard tape, wound on $180-\mathrm{mm} \varnothing$ reel
■ Packing unit: 4000 pcs./reel

SIMID 0603-C

SMD

Dimensional drawing and layout recommendation

Dimensions in mm

Taping and packing
Cardboard tape

$\xrightarrow[\text { INDO553-H-E }]{\text { Direction of unreeling }}$
Dimensions in mm

Reel

Technical data and measuring conditions

Rated inductance L_{R}	Measured with impedance analyzer Agilent 4291A and test fixture Agilent 16196 A at frequency $\mathrm{f}_{\mathrm{L}}, 0.1 \mathrm{~V}$, $+20^{\circ} \mathrm{C}$
Q factor $\mathrm{Q}_{\min }, \mathrm{Q}_{\text {typ }}$	Measured with impedance analyzer Agilent 4291A and test fixture Agilent 16196 A, $\mathrm{Q}_{\text {min }}$ measured at frequency $\mathrm{f}_{\mathrm{Q}},+20^{\circ} \mathrm{C}$
Rated temperature T_{R}	$+125^{\circ} \mathrm{C}$
Rated current I_{R}	Maximum permissible DC with a temperature increase of $\leq 15 \mathrm{~K}$ at rated temperature
Self-resonance frequency $\mathrm{f}_{\text {res }, \text { min }}$	Measured with network analyzer Agilent 8720D, +20 ${ }^{\circ} \mathrm{C}$
DC resistance $\mathrm{R}_{\text {max }}$	Measured at $+20^{\circ} \mathrm{C}$
Solderability (lead-free)	Sn95.5Ag3.8Cu0.7: $+(245 \pm 5){ }^{\circ} \mathrm{C},(5 \pm 0.3) \mathrm{s}$ Wetting of soldering area $\geq 95 \%$ $($ based on IEC $60068-2-58)$
Resistance to soldering heat	$+260{ }^{\circ} \mathrm{C}, 40 \mathrm{~s}($ as referenced in JEDEC J-STD 020D)
Climatic category	$55 / 150 / 56$ (to IEC $60068-1)$
Storage conditions	Mounted: $-55^{\circ} \mathrm{C} \ldots+150{ }^{\circ} \mathrm{C}$ Packaged: $-25^{\circ} \mathrm{C} \ldots+40{ }^{\circ} \mathrm{C}, \leq 75 \% \mathrm{RH}$
Weight	Approx. 4 mg

Characteristics and ordering codes

L_{R} nH	Tolerance	$\mathrm{Q}_{\text {min }}$	$\begin{array}{\|l} \begin{array}{l} Q_{\text {typ }} \\ (\mathrm{at} \\ 800 \mathrm{MHz}) \end{array} \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & f_{L} ; f_{Q} \\ & \mathrm{MHz} \end{aligned}\right.$	$\begin{aligned} & \mathrm{I}_{\mathrm{R}} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\max } \\ & \Omega \end{aligned}$	$\begin{aligned} & \mathrm{f} \text { res,min } \\ & \mathrm{GHz} \end{aligned}$	Ordering code ${ }^{1)}$ (reel packing)
1.0	$\begin{aligned} & \pm 0.3 \mathrm{nH} \xlongequal[=]{\mathrm{A}} \\ & \pm 0.2 \mathrm{nH} \cong \mathrm{Z} \end{aligned}$	7	60	100	1800	0.02	16	B82496C3109+000
1.2		8	60	100	1800	0.025	15	B82496C3129+000
1.5		8	50	100	1500	0.03	13	B82496C3159+000
1.8		12	50	100	1500	0.033	12	B82496C3189+000
2.2		14	50	100	1500	0.035	10	B82496C3229+000
2.7		14	40	100	1400	0.04	10	B82496C3279+000
3.3		14	40	100	1200	0.06	9	B82496C3339+000
3.9	$\begin{aligned} & \pm 5 \% \hat{} 1 \\ & \pm 0.2 \mathrm{nH} \hat{\cong} \mathrm{Z} \end{aligned}$	14	40	100	1100	0.065	8	B82496C3399+000
4.7		14	40	100	800	0.10	7	B82496C3479+000
5.6		14	40	100	700	0.15	6	B82496C3569+000
6.8		14	40	100	700	0.15	6	B82496C3689+000
8.2		14	40	100	650	0.18	6	B82496C3829+000
10	$\begin{aligned} & \pm 5 \% \hat{=} \mathrm{J} \\ & \pm 2 \% \cong \mathrm{G} \end{aligned}$	14	40	100	600	0.20	5	B82496C3100+000
12		14	40	100	450	0.35	5	B82496C3120+000
15		14	40	100	420	0.40	4.5	B82496C3150+000
18		14	40	100	400	0.45	4.0	B82496C3180+000
22		14	40	100	380	0.50	4.0	B82496C3220+000
27		14	35	100	360	0.55	3.0	B82496C3270+000
33		14	35	100	350	0.60	3.0	B82496C3330+000
39		14	35	100	300	0.80	2.5	B82496C3390+000
47		14	35	100	270	0.95	2.5	B82496C3470+000
56		14	35	100	250	1.2	2.5	B82496C3560+000
68		14	35	100	230	1.3	2.0	B82496C3680+000
82		14	35	100	220	1.5	2.0	B82496C3820+000
100		14	30	100	200	1.8	1.8	B82496C3101+000
120		5	30	25.2	160	3.0	1.8	B82496C3121+000
150		5	30	25.2	130	5.0	1.6	B82496C3151+000
180		4	25	25.2	120	6.0	1.4	B82496C3181+000
220		4	25	25.2	110	7.0	1.3	B82496C3221+000

Special versions on request.
Higher currents possible at temperatures $<T_{R}$ on request.
Sample kit available (see also chapter "Sample kits". Ordering code: B82496X001

Impedance $|\mathrm{Z}|$ versus frequency f
measured with impedance analyzer
Agilent $4291 \mathrm{~A} / 16196 \mathrm{~A}$, typical values at $+20^{\circ} \mathrm{C}$

\mathbf{Q} factor versus frequency \mathbf{f}

measured with impedance analyzer
Agilent $4291 \mathrm{~A} / 16196 \mathrm{~A}$, typical values at $+20^{\circ} \mathrm{C}$

Inductance L versus DC load current $I_{D C}$ measured with LCR meter Agilent 4275A, typical values at $+20^{\circ} \mathrm{C}$

Current derating $\mathrm{I}_{\mathrm{op}} / \mathrm{I}_{\mathrm{R}}$ versus ambient temperature T_{A}
(rated temperature $\mathrm{T}_{\mathrm{R}}=+125^{\circ} \mathrm{C}$)

