Features

* High-performance, Low-power AVR™ 8-bit Microcontroller
* Advanced RISC Architecture
— 130 Powerful Instructions — Most Single Clock Cycle Execution
— 32 x 8 General Purpose Working Registers
— Fully Static Operation
= Up to 16 MIPS Throughput at 16 MHz
— On-chip 2-cycle Multiplier
* Monvolatile Program and Data Memories
— BK Bytes of In-System Self-Programmable Flash
Endurance: 10,000 Write/Erase Cycles
— Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
— 512 Bytes EEPROM
Endurance: 100,000 Write/Erase Cycles
- 512 Bytes Internal SRAM
— Programming Lock for Software Security
* Peripheral Features
= Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
— One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
— Real Time Counter with Separate Oscillator
— Four PWM Channels
— B-channel, 10-bit ADC
8 Single-ended Channels
7 Differential Channels for TQFP Package Only
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x for TQFP
Package Only
— Byte-oriented Two-wire Serial Interface
— Programmable Serial USART
— Master/Slave SPI Serial Interface
- Programmable Watchdog Timer with Separate On-chip Oscillator
— On-chip Analog Comparator

Special Microcontroller Features
- Power-on Reset and Programmable Brown-out Detection
- Internal Calibrated RC Oscillator
— External and Internal Interrupt Sources
— Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby
and Extended Standby
'O and Packages
— 32 Programmable /O Lines
= 40-pin PDIP, 44-lead TQFP, 44-lead PLCC, and 44-pad QFN/MLF
Operating Voltages
— 2.7 - 5.5V for ATmegaB8535L
— 4.5 - 5.5V for ATmegaB535
Speed Grades
— 0 -8 MHz for ATmega8535L
= 0-16 MHz for ATmega8535

L JO

8-bit AVR"
Microcontroller
with 8K Bytes
In-System
Programmable
Flash

ATmega8535
ATmega8535L

Pin Configurations

Figure 1. Pinout ATmegaB535

XTAL2
XTaL1
(FXD) PDO
(TED) PD1
(INTO) PO2
(INT1) PD3
|=C1E) PO
(=C1A) POS
@CR1) POE

o B

TOFPIMLF
PLCC
E g E EEaF
gEscy HHHE
- L= -
fEEEPaIzEzzg
pooooooooon
TR REAEERZ
W08 FES @ﬂ (WACIEI) PES FIras (aDcs)
S0 PEE I (WSO Fas FIFas (aDCS)
(50K FET L |BCH) PET FlPas (ADCE)
RESET IoE RESET CIPAT (ADCT)
Voo I EG 1 aREF
GHD I GHD [ey
MTAL2 Lo HTALZ 0 aves
XTAL1 o= HTALA BRCcr (Toscz)
XDy POO I = (R} PDO Flrcea (ToEci)
(TxDp PO L [TxD) PO Brcs
INTOR FO2 B INTO) PO2 OrCcs

MOTE: MLF Bottomn pad should be soldered to ground.

Disclaimer Typical values contained in this data sheet are based on simulations and characteriza-
tion of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.

Overview The ATmega8535 is a low-power CMOS 8-bit microcontroller based on the AVR

enhanced RISC architecture. By executing instructions in a single clock cycle, the
ATmega8535 achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.

Block Diagram

Figure 2. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers.
All 32 registers are directly connected to the Arithmetic Logic Unit {ALU). allowing two
independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

PAD - AT FCO. POT
¥aoo & & & & & 4 M & & F I F
T_ FEEREEEERS
- -
r POATA DRIVERS/BLUFFERS PORTC DRVERSBUFFERS
w
END PORTA DIGITAL INTERFACE POFTC DIGITAL INTERFACE
ANCC . = >
MUX & ADC
'< ADC o L e O i
I EE—
* TIMERE/ —
ProGRAM |, J— | couners | CscimoR
COUNTER POMTER
I i
PROGREM | [T INTERMAL
FLASH | ERaM OECILLATOR
] l XTALY
: S
INSTRUCTION GENERAL WATCHDOG
REGIETER | |l FumeCse =% R SRCLLAOR —
REGISTERS
]
— 1 LT
I+ x
INSTRUCTION MCL CTRL —
DECODER o " =% ETIMING RESET
l A z |
CONTROL INTERHAL
LNES « W ETTET CALIBRETED
OSCILLATOR
ETATUE
AVR CPU P e T s i
s 5 5F1 e M—s wSAAT
—
ik COMP
. INTERFACE [* ™
PORTE DIGITAL INTERFACE PORTD DIGITAL INTERFACE
POFTE DRAIVERS/AEUFFERS PORTD DRVERSBUFFERS
.
L LR BN K B B I EEEEENRR:]
FBO. FET FO0- POT

AT90S8535 Compatibility

AT9058535 Compatibility
Mode

Pin Descriptions

""cc

GND

Port A (PA7..PA0)

The ATmega8535 provides the following features: BK bytes of In-System Programmable
Flash with Read-While-Write capabilities, 512 bytes EEPROM, 512 bytes SRAM, 32
general purpose I/O lines, 32 general purpose working registers, three flexible
Timer/Counters with compare modes, internal and external interrupts, a serial program-
mable USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with
optional differential input stage with programmable gain in TQFP package, a program-
mable Watchdog Timer with Internal Oscillator, an SPI serial port, and six software
selectable power saving modes. The Ildle mode stops the CPU while allowing the
SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The
Power-down mode saves the register contents but freezes the Oscillator, disabling all
other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the
asynchronous timer continues to run, allowing the user to maintain a timer base while
the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and
all YO modules except asynchronous timer and ADC, to minimize switching noise during
ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the
rest of the device is sleeping. This allows very fast start-up combined with low-power
consumption. In Extended Standby mode, both the main Oscillator and the asynchro-
nous timer continue to run.

The device is manufactured using Atmel's high density nonvolatile memory technology.
The On-chip ISP Flash allows the program memory to be reprogrammed In-System
through an SPI serial interface, by a conventional nonvolatile memory programmer, or
by an On-chip Boot program running on the AVR core. The boot program can use any
interface to download the application program in the Application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU
with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega8535
is a powerful microcontroller that provides a highly flexible and cost effective solution to
many embedded control applications.

The ATmegaB535 AVR is supported with a full suite of program and system develop-
ment tools including: C compilers, macro assemblers, program debugger/simulators, In-
Circuit Emulators, and evaluation kits.

The ATmega8535 provides all the features of the AT9058535. In addition, several new
features are added. The ATmega8535 is backward compatible with AT3058535 in most
cases. However, some incompatibilities between the two microcontrollers exist. To
solve this problem, an AT9058535 compatibility mode can be selected by programming
the SB535C fuse. ATmegaB535 is pin compatible with AT9058535, and can replace the
AT9058535 on current Printed Circuit Boards. However, the location of fuse bits and the
electrical characteristics differs between the two devices.

Programming the S8535C fuse will change the following functionality:

* The timed sequence for changing the Watchdog Time-out period is disabled. See
“Timed Sequences for Changing the Configuration of the Watchdog Timer® on page
45 for details.

* The double buffering of the USART Receive Register is disabled. See "AVR USART
vs. AVR UART - Compatibility” on page 146 for details.

Digital supply voltage.
Ground.

Port A serves as the analog inputs to the A/D Converter.

Port A also serves as an 8-bit bi-directional IYO port, if the A/D Converter is not used.
Port pins can provide intemal pull-up resistors (selected for each bit). The Port A ocutput
buffers have symmetrical drive characteristics with both high sink and source capability.
When pins PAD to PA7 are used as inputs and are externally pulled low, they will source
current if the internal pull-up resistors are activated. The Port A pins are tri-stated when
a reset condition becomes active, even if the clock is not running.

Port B (PB7..PBO)

Port C (PC7..PCO)

Port D (PD7..PDO)

I
m
0
a

XTAL1
XTAL2

AVCC

AREF

Resources

About Code
Examples

AVR CPU Core

Introduction

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATmega8535 as listed
on page 60.

Port C is an B-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D is an B-bit bi-directional IO port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega8535 as listed
on page 64.

Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
15 on page 37. Shorter pulses are not guaranteed to generate a reset.

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Output from the inverting Oscillator amplifier.

AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally
connected to Vg, even if the ADC is not used. If the ADC is used, it should be con-

nected to V. through a low-pass filter.

AREF is the analog reference pin for the A/D Converter.

A comprehensive set of development tools, application notes and datasheets are avail-
able for download on http://www.atmel.com/avr.

This documentation contains simple code examples that briefly show how to use various
parts of the device. These code examples assume that the part specific header file is
included before compilation. Be aware that not all C compiler vendors include bit defini-
tions in the header files and interrupt handling in C is compiler dependent. Please
confirm with the C Compiler documentation for more details.

This section discusses the AVR core architecture in general. The main function of the

CPU core is to ensure correct program execution. The CPU must therefore be able to

access memories, perform calculations, control peripherals, and handle interrupts.

Architectural Overview

Figure 3. Block Diagram of the AVR MCU Architecture

l 8-bit Data Bus
L 4
Program Status L
Flash * Counter] and Gontrol
Frogram
Memory -+
Interrupt
- » 32x8 - Unit
Instruction General -
Reqister Purpose SPI
- Registrers > Unit
L 4
Instruction Watchdog
Decoder 3 4 “— Timer
W o
g % ALU P Analog
Control Lines = 3 Comparator
- —_
B L4
a E " /O Module1
_ Data « s> 110 Module 2
* SHAM
i 'O Module n
EEPROM e
/O Lines *—

In order to maximize performance and parallelism, the AVR uses a Harvard architecture
— with separate memories and buses for program and data. Instructions in the program
memaory are executed with a single level pipelining. While one instruction is being exe-
cuted, the next instruction is pre-fetched from the program memory. This concept
enables instructions to be executed in every clock cycle. The program memory is In-
System Re-Programmable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with
a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU)
operation. In a typical ALU operation, two operands are output from the Register File,
the operation is executed, and the result is stored back in the Register File — in one
clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing — enabling efficient address calculations. One of the these
address pointers can also be used as an address pointer for look up tables in Flash pro-
gram memory. These added function registers are the 16-bit X-, Y-, and Z-registers,
described later in this section.

The ALU supports arithmetic and logic operations between registers or between a con-
stant and a register. Single register operations can also be executed in the ALU. After
an arithmetic operation, the Status Register is updated to reflect information about the
result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions,
able to directly address the whole address space. Most AVR instructions have a single
16-bit word format. Every program memory address contains a 18- or 32-bit instruction.

ALU - Arithmetic Logic
Unit

Status Register

Program Flash memory space is divided in two sections, the Boot Program section and
the Application Program section. Both sections have dedicated Lock bits for write and
read/write protection. The SPM instruction that writes into the Application Flash memaory
section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the Stack. The Stack is effectively allocated in the general data SRAM, and
consequently the Stack size is only limited by the total SRAM size and the usage of the
SHRAM. All user programs must initialize the SP in the reset routine (before subroutines
or interrupts are executed). The Stack Pointer SP is read/write accessible in the /O
space. The data SRAM can easily be accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the YO space with an additional
Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt
Vector in the Interrupt Vector table. The interrupts have priority in accordance with their
Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority.

The /O memory space contains 64 addresses for CPU peripheral functions as Control
Registers, SPI, and other /O functions. The /O Memory can be accessed directly, or as
the Data Space locations following those of the Register File, 0x20 - 0x5F.

The high-performance AVR ALU operates in direct connection with all the 32 general
purpose working registers. Within a single clock cycle, arithmetic operations between
general purpose registers or between a register and an immediate are executed. The
ALU operations are divided into three main categories — arithmetic, logical, and bit-func-
tions. Some implementations of the architecture also provide a powerful multiplier
supporting both signed/unsigned multiplication and fractional format. See the “Instruc-
tion Set” section for a detailed description.

The Status Register contains information about the result of the most recently executed
arithmetic instruction. This information can be used for altering program flow in order to
perform conditional operations. Mote that the Status Register is updated after all ALU
operations, as specified in the Instruction Set Reference. This will, in many cases,
remove the need for using the dedicated compare instructions, resulting in faster and
more compact code.

The Status Register is not automatically stored when entering an interrupt routine and
restored when retuming from an interrupt. This must be handled by software.

The AVR Status Register — SREG - is defined as:

Bit 7 5 5 4 3 2 1 o
] _? A [s [v N _E C | sRec

Read/Write R T R W R R T W

Initial Value o o o 0 0 o o o

+ Bit 7 = |: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individ-
ual interrupt enable control is then performed in separate control registers. If the Global
Interrupt Enable Register is cleared, none of the interrupts are enabled independent of
the individual interrupt enable settings. The |-bit is cleared by hardware after an interrupt
has occurred, and is set by the RETI instruction to enable subsequent interrupts. The |-
bit can also be set and cleared by the application with the SEI and CLI instructions, as
described in the instruction set reference.

+ Bit 6 - T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or
destination for the operated bit. A bit from a register in the Register file can be copied

into T by the BST instruction, and a bit in T can be copied into a bit in a register in the
Register File by the BLD instruction.

* Bit 5= H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half carry is
useful in BCD arithmetic. See the “Instruction Set Description” for detailed information.
* Bit4-S:SignBit,S=N@V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Comple-
ment Overflow Flag V. See the “Instruction Set Description” for detailed information.

* Bit3 - V: Two's Complement Overflow Flag

The Two's Complement Overflow Flag V supports two's complement arithmetics. See
the “Instruction Set Description” for detailed information.

* Bit 2 — N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See
the “Instruction Set Description” for detailed information.

* Bit1-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

* Bit 0 - C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruc-
tion Set Description” for detailed information.

General Purpose
Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to
achieve the required performance and flexibility, the following input/output schemes are
supported by the Register File:

* One B-bit output operand and one 8-bit result input

+ Two 8-bit output operands and one 8-bit result input
* Two 8-bit output operands and one 16-bit result input
One 16-bit output operand and one 16-bit result input

Figure 4 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4. AVR CPU General Purpose Working Registers

7 1] Adddr.
FiD 000
A1 Ot
R Qw2
Ri13 i)
General Ri4 O0E
Purpose R15 O=0F
Working R16 Qo1
Registers. R17 [EFR B
R2& 1A ¥-register Low Byte
Ra7T 1B ¥-register High Byte
R2a 1 C -register Low Byte
Ra2g 1D -register High Byte
Rao 01E Z-register Low Byte
R ox1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers,
and most of them are single cycle instructions.

As shown in Figure 4, each register is also assigned a data memory address, mapping
them directly into the first 32 locations of the user Data Space. Although not being phys-
ically implemented as SRAM locations, this memory organization provides great
flexibility in access of the registers, as the X-, Y-, and Z-pointer Registers can be set to
index any register in the file.

The X-register, Y-register, and The registers R26..R31 have some added functions to their general purpose usage.

Z-register

Stack Pointer

Instruction Execution
Timing

These registers are 16-bit address pointers for indirect addressing of the Data Space.
The three indirect address reqgisters X, ¥, and Z are defined as described in Figure 5.

Figure 5. The X-, ¥-, and Z-registers

15 *H XL o
X-register I o7 o]
R2T {0x1B) 26 (0x14)
15 ¥H YL o
Y-register I K o]
R29 {01 D) R22 (0x1C)
15 ZH Fa B o
Z-register I 7 7] I 7 0 I
CRIRTIE] 30 (DX 1E}

In the different addressing modes, these address registers have functions as fixed dis-
placement, automatic increment, and automatic decrement (see the instruction set
reference for details).

The Stack is mainly used for storing temporary data, for storing local variables and for
storing return addresses after interrupts and subroutine calls. The Stack Pointer Regis-
ter always points to the top of the Stack. Note that the Stack is implemented as growing
from higher memory locations to lower memory locations. This implies that a Stack
PUSH command decreases the Stack Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Inter-
rupt Stacks are located. This Stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above 0x60. The Stack Pointer is decremented by one
when data is pushed onto the Stack with the PUSH instruction, and it is decremented by
two when the return address is pushed onto the Stack with subroutine call or interrupt.
The Stack Pointer is incremented by one when data is popped from the Stack with the
POP instruction, and it is incremented by two when data is popped from the Stack with
return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the /O space. The num-
ber of bits actually used is implementation dependent. Mote that the data space in some
implementations of the AVR architecture is so small that only SPL is needed. In this
case, the SPH Register will not be present.

Bit 15 14 13 12 1 10 a a
- - - - - - 5P S5Pa SPH
SPT S5P6 5P5 S5Pd4 SP3 5Pz 5P1 SP0 SPL
7 & 5 4 3 2 1 o
Read Write R RAN RAN RAN RW RW R R
RW RAN RAN RW RW RW R R
Initial Value 4] o [v] 1] 1] 0 0 o
4] o [v] 1] 1] 0 0 o

This section describes the general access timing concepts for instruction execution. The
AVR CPU is driven by the CPU clock clkgg), directly generated from the selected clock
source for the chip. Mo internal clock division is used.

Figure 6 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast-access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks, and functions per power-unit.

Reset and Interrupt
Handling

Figure 6. The Parallel Instruction Fetches and Instruction Executions
T T2 T3 T4

clkepyy

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch

&

Figure 7 shows the internal timing concept for the Register file. In a single clock cycle an
ALU operation using two register operands is executed, and the result is stored back to
the destination register.

Figure 7. Single Cycle ALU Operation

T T2 T3 T4
I 1 1 1
]] (]]
Clkepy — | . |
Total Execution Time — > : |
I 1] 1
Register Operands Fetch —<___ > ; ¥ :
I 1 n 1
ALU Operation Execute , <, — T :
L) L] i
I i n 1
R It Write Back ' ' - !
esult Write Bac . > . ;

The AVR provides several different interrupt sources. These interrupts and the separate
Reset Vector each have a separate Program Vector in the program memory space. All
interrupts are assigned individual enable bits which must be written logic one together
with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt.
Depending on the Program Counter value, interrupts may be automatically disabled
when Boot Lock bits BLB0Z2 or BLB12 are programmed. This feature improves software
security. See the section “Memory Programming” on page 237 for details.

The lowest addresses in the program memory space are, by default, defined as the
Reset and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on
page 46. The list also determines the priority levels of the different interrupts. The lower
the address, the higher the priority level is. RESET has the highest priority, and next is
INTQ — the External Interrupt Request 0. The Interrupt Vectors can be moved to the start
of the Boot Flash section by setting the IVSEL bit in the General Interrupt Control Regis-
ter (GICR). Refer to “Interrupts” on page 46 for more information. The Reset Vector can

also be moved to the start of the Boot Flash section by programming the BOOTRST
Fuse, see “Boot Loader Support — Read-While-Write Self-Programming” on page 224.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts
are disabled. The user software can write logic one to the |-bit to enable nested inter-
rupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is
automatically set when a Return from Interrupt instruction — RETI - is executed.

There are basically two types of interrupts. The first type is triggered by an event that
sets the interrupt flag. For these interrupts, the Program Counter is vectored to the
actual Interrupt Vector in order to execute the interrupt handling routine, and hardware
clears the corresponding interrupt flag. Interrupt flags can also be cleared by writing a
logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the
corresponding interrupt enable bit is cleared, the interrupt flag will be set and remem-
bered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or
more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the cor-
responding interrupt flag(s) will be set and remembered until the Global Interrupt Enable
bit is set, and will then be executed by order of priority.

Interrupt Response Time

The second type of interrupts will trigger as long as the interrupt condition is present.
These interrupts do not necessarily have interrupt flags. If the interrupt condition disap-
pears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and exe-
cute one more instruction before any pending interrupt is served.

Mote that the Status Register is not automatically stored when entering an interrupt rou-
tine, nor restored when returning from an interrupt routine. This must be handled by
software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately
disabled. Mo interrupt will be executed after the CLI instruction, even if it occurs simulta-
neously with the CLI instruction. The following example shows how this can be used to
avoid interrupts during the timed EEPROM write sequence.

Assembly Code Example

in 6, SREG ; store SREG value

cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ; start EEFROM write

sbi EECR, EEWE

out SREG, ré ; resfore SREG value (I-hit)

C Code Example

char cSREG;

cSREG = SREG: / store SREG value

I* disable interrupts during timed sequence */
_CLi:

EECR |= (1<<EEMWE); /* start EEFROM write "/
EECR |= (1<<EEWE);

SREG = ¢SREG: /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be

executed before any pending interrupts, as shown in this example.

Assembly Code Example

sei ; sef global interrupt enable

sleep ; enter sleep, waiting for interrupt

; note: will enter sleep before any pending
; interrupt(s)

C Code Example

_SEN); /* set global interrupt enable
_SLEEPY); / enter sleep, waiting for interrupt ¥
/* note: will enter sleep before any pending interrupt(s) *f

The interrupt execution response for all the enabled AVR interrupts is four clock cycles
minimum. After four clock cycles, the Program Vector address for the actual interrupt
handling routine is executed. During this four clock cycle period, the Program Counter is
pushed onto the Stack. The Vector is normally a jump to the interrupt routine, and this
jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle
instruction, this instruction is completed before the interrupt is served. If an interrupt
occurs when the MCU is in sleep mode, the interrupt execution response time is
increased by four clock cycles. This increase comes in addition to the start-up time from
the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four
clock cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack
Pointer is incremented by two, and the |-bit in SREG is set.

AVR ATmega8535
Memories

In-System
Reprogrammable Flash
Program Memory

Figure 8. Program Memory Map

This section describes the different memories in the ATmegaB535. The AVR architec-
ture has two main memory spaces, the Data Memory and the Program Memory space.
In addition, the ATmega8535 features an EEPROM Memory for data storage. All three
memory spaces are linear and regular.

The ATmega8535 contains 8K bytes On-chip In-System Reprogrammable Flash mem-
ory for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is
organized as 4K x 16. For software security, the Flash Program memory space is
divided into two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The
ATmegaB535 Program Counter (PC) is 12 bits wide, thus addressing the 4K program
memory locations. The operation of Boot Program section and associated Boot Lock
bits for software protection are described in detail in “Boot Loader Support — Read-
While-Write Self-Programming” on page 224. “Memory Programming” on page 237 con-
tains a detailed description on Flash Programming in SP| or Parallel Programming
mode.

Constant tables can be allocated within the entire program memory address space (see
the LPM — Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execu-
tion Timing” on page 13.

Application Flash Section

soam——

$000

Boot Flash Section

$FFF

SRAM Data Memory

Figure 9 shows how the ATmegaB535 SRAM Memaory is organized.

The 608 Data Memory locations address the Register File, the IO Memory, and the
internal data SRAM. The first 86 locations address the Register File and IO Memory,
and the next 512 locations address the internal data SRAM.

The five ditferent addressing modes for the data memory cover: Direct, Indirect with Dis-
placement, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In
the Register File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base
address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-
increment, the address registers X, . and Z are decremented or incremented.

The 32 general purpose working registers, 64 /O Registers, and the 512 bytes of inter-
nal data SRAM in the ATmega8535 are all accessible through all these addressing
modes. The Register File is described in "General Purpose Register File" on page 11.

Figure 9. Data Memory Map

Data Memory Access Times

Register File Data Address Space
S $0000
1 50001
A2 0002
R29 $001D
R30 S001E
B3 1 S001F
e} Registem ______________
$00 $0020
501 £0021
$02 $0022
$3D $005D
230 S00SC
$3F 1 _ o _____ $00SF
Internal SRAM
50060
20061
S025E
S025F

This section describes the general access timing concepts for internal memory access.
The internal data SRAM access is performed in two clkepy cycles as described in Figure
10.

EEPROM Data Memory

EEPROM Read/Write Access

The EEPROM Address
Register - EEARH and EEARL

Figure 10. On-chip Data SRAM Access Cycles
T T2 T3

Py A N S N A W

cPU : . :
Address ' Compute Address | % Address valid |
1 1 I
Data l i~ b, .
i [] | =
i [}]
WR | | h =
i 1 I —
I] T, I _
Data v — D
] 1 T B
I 1 | E
HD !] _IF :1,[
L] T —
i |] I
Memory Access Instruction Mext Instruction

The ATmegaB535 contains 512 bytes of data EEPROM memory. It is organized as a
separate data space, in which single bytes can be read and written. The EEPROM has
an endurance of at least 100,000 write/erase cycles. The access between the EEPROM
and the CPU is described in the following, specifying the EEPROM Address Registers,
the EEPROM Data Register, and the EEPROM Control Register.

“Memory Programming” on page 237 contains a detailed description on EEPROM Pro-
gramming in SPI or Parallel Programming mode.

The EEPROM Access Registers are accessible in the /O space.

The write access time for the EEPROM is given in Table 1. A self-timing function, how-
ever, lets the user software detect when the next byte can be written. If the user code
contains instructions that write the EEPROM, some precautions must be taken. In
heavily filtered power supplies, V¢ is likely to rise or fall slowly on Power-up/down. This
causes the device, for some period of time, to run at a voltage lower than specified as
minimum for the clock frequency used, see “Preventing EEPROM Corruption” on page
22 for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be fol-
lowed. Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next
instruction is executed. When the EEPROM is written, the CPU is halted for two clock
cycles before the next instruction is executed.

Eit 15 14 13 12 11 10] a
- = = = - - - EEARS EEARH
EEART | EEARG | EEARS | EEAR4 | EEAR3 | EEARZ | EEAR1 | EEAROD EEARL

T B 5 4 3 2 1 o
Rezd Write R R R R R R R RAY
AW R RAN RW RMW RAN RW RAY
Initial Value 4] o o] V] 1]] X
X X X X X X X X

* Bits 15..9 — Res: Reserved Bits

These bits are reserved bits in the ATmegaB535 and will always read as zero.
» Bits 8..0 - EEARS..0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address
in the 512 bytes EEPROM space. The EEFPROM data bytes are addressed linearly
between 0 and 511. The initial value of EEAR is undefined. A proper value must be writ-
ten before the EEPROM may be accessed.

The EEPROM Data Register —

EEDR

The EEPROM Control Register

- EECR

Bit) B 5 4 3 2 1 i)

M5B | _ _ L5B I EEDR
Read Write RAN R RAN RW RMW RAN RW RAY
Initial Value [4] o i] o [i] [i] o i)

* Bits 7..0 - EEDR7..0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to
the EEPROM in the address given by the EEAR Register. For the EEPROM read oper-
ation, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.

Bit 7 B 5 i 3 2 1 0

I - - - EERIE | EENWE | EEWE | EERE | EECR
Read/Write R R R AW AW RW R
Initial Value o 0 o 0 o o X o

+ Bits 7..4 - Res: Reserved Bits

These bits are reserved bits in the ATmegaB535 and will always read as zero.
* Bit 3 — EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the |-bit in SREG is set.
Writing EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a
constant interrupt when EEWE is cleared.

+« Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEFROM to be
written. When EEMWE is set, setting EEWE within four clock cycles will write data to the
EEPROM at the selected address If EEMWE is zero, setting EEWE will have no effect.
When EEMWE has been written to one by software, hardware clears the bit to zero after
four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.

* Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be written to one to write the

value into the EEPROM. The EEMWE bit must be written to one before a logical one is
written to EEWE, otherwise no EEPROM write takes place. The following procedure
should be followed when writing the EEPROM (the order of steps 3 and 4 is not
essential):

Wait until EEWE becomes zero.

Wait until SPMEMN in SPMCR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
Within four clock cycles after setting EEMWE, write a logical one to EEWE.

SO

The EEPROM can not be programmed during a CPU write to the Flash memory. The
software must check that the Flash programming is completed before initiating a new
EEPROM write. Step 2 is only relevant if the software contains a Boot Loader allowing
the CPU to program the Flash. If the Flash is never updated by the CPU, step 2 can be
omitted. See “Boot Loader Support — Read-While-Write Sel-Programming” on page 224
for details about Boot programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM access, the EEAR or EEDR Register will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the Global Interrupt Flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The
user software can poll this bit and wait for a zero before writing the next byte. When
EEWE has been set, the CPU is halted for two cycles before the next instruction is
executed.

» Bit 0 - EERE: EEFROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the
correct address is set up in the EEAR Register, the EERE bit must be written to a logic
one to trigger the EEPROM read. The EEPROM read access takes one instruction, and
the requested data is available immediately. When the EEFPROM is read, the CPU is
halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation
is in progress, it is neither possible to read the EEPROM, nor to change the EEAR
Reqister.

The calibrated Oscillator is used to time the EEPROM accesses. Table 1 lists the typical
programming time for EEFROM access from the CPU.

Table 1. EEPROM Programming Time

Number of Calibrated Typ
Symbol RC Oscillator Cycles'” Programming Time
EEPROM Write (from CPU) 8448 8.4 ms

Mote: 1. Uses 1 MHz clock, independent of CKSEL Fuse settings.

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g., by disabling inter-
rupts globally) so that no interrupts will occur during execution of these functions. The
examples also assume that no Flash Boot Loader is present in the software. If such
code is present, the EEPROM write function must also wait for any ongeing SPM com-
mand to finish.

Assembly Code Example

EEPROM_write:
; Wait for completion of previous write
sbic EECR,EEWE
rjmp EEPROM_write
; Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, 17
; Write data {r16) fo Data Register
out EEDR,ME
; Write logical one to EEMWE
shi EECR.EEMWE
; Start eeprom write by setting EEWE
sbi EECR,EEWE
ret

C Code Example

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)
{

" Wait for completion of previous write ™/

while(EECR & (1<<EEWE))

" Set up Address and Data Reqgisters */
EEAR = uiAddress;

EEDR = ucData;

* Write logical one to EEMWE ¥

EECR |= (1<<EEMWE);

/ Start eeprom write by setting EEWE "/
EECR |= (1<<EEWE);

The next code examples show assembly and C functions for reading the EEPROM. The
examples assume that interrupts are controlled so that no interrupts will occur during
execution of these functions.

Assembly Code Example

EEFROM_read:
; Wait for completion of previous write
shic EECR,EEWE
rjmp EEPROM_read
; Set up address (r18.:r17) in Address Register
out EEARH, r18
out EEARL, 17
; Start eeprom read by writing EERE
sbi EECR.,EERE
; Read data from Data Register
in r16,EEDR
ret

C Code Example

unsigned char EEPROM_read(unsigned int uviAddress)

{
/™ Wait for completion of previous wrife */
while(EECR & (1=<EEWE))

I* Set up Address Register */

EEAR = uiAddress;

* Start eeprom read by writing EERE */
EECR |= (1<<EERE};

/™ Return data from Data Register 7
return EEDR;

EEPROM Write During Power- When entering Power-down sleep mode while an EEPROM write operation is active, the

down Sleep Mode EEPROM write operation will continue, and will complete before the write access time
has passed. However, when the write operation is completed, the Oscillator continues
running, and as a consequence, the device does not enter Power-down entirely. It is
therefore recommended to verify that the EEPROM write operation is completed before
entering Power-down.

Preventing EEPROM
Corruption

/O Memory

During periods of low Ve, the EEPROM data can be corrupted because the supply volt-
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using EEPROM and the same design solutions should
be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage is too low.

EEFPROM data corruption can easily be avoided by following this design
recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply volt-
age. This can be done by enabling the internal Brown-out Detector (BOD). If the
detection level of the internal BOD does not match the needed detection level, an
external low V- Reset Protection circuit can be used. If a reset occurs while a write
operation is in progress, the write operation will be completed provided that the
power supply voltage is sufficient.

The I/O space definition of the ATmegaB535 is shown in page 299,

All ATmegaB535 /0= and peripherals are placed in the YO space. The /O locations are
accessed by the IN and OUT instructions, transferring data between the 32 general pur-
pose working registers and the /O space. I/O Registers within the address range 0x00 -
0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers,
the value of single bits can be checked by using the SBIS and SBIC instructions. Refer
to the instruction set section for more details. When using the 1/0 specific commands |N
and OUT, the /O addresses 0x00 - 0x3F must be used. When addressing /O Registers
as data space using LD and ST instructions, 0x20 must be added to these addresses.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved /O memory addresses should never be written.

Some of the status flags are cleared by writing a logical one to them. Mote that the CBI
and SBl instructions will operate on all bits in the I/O Register, writing a one back into
any flag read as set, thus clearing the flag. The CEBI and 5Bl instructions work with reg-
isters 0x00 to Ox1F only.

The I/O and peripherals control registers are explained in later sections.

System Clock and
Clock Options

Clock Systems and their
Distribution

CPU Clock — clkp,

VO Clock — ek,

Flash Clock — clkg, cy

Asynchronous Timer Clock —
leﬁs\r

ADC Clock - clkape

Figure 11 presents the principal clock systems in the AVR and their distribution. All of
the clocks need not be active at a given time. In order to reduce power consumption, the
clocks to modules not being used can be halted by using different sleep modes, as
described in “Power Management and Sleep Modes"” on page 32. The clock systems
are detailed below.

Figure 11. Clock Distribution

Asynichienous General 110 Flash and
TimerfCounber Modules ADG CFU Gom AAM EEPACK
'y 'y A 'y A & i A

-::lcE
ek AV Clock Elkpy,
Contrel Unit
I:‘Al'l' ﬂ"'F'I.nl.iﬂ
F I'
Ragat Loge Walchdeg Timer
(I .
Sounce dock Walchdog clock
Clock Walchdog
Multiplezer Oscillator
4 A 4 &

TimenCounter External RC Cryatal Low-raquency Calibrated AC
Oiacillator Oseilator Exiernal Clock Dseillator Crystal Oseillator Dscillator

The CPU clock is routed to parts of the system concerned with operation of the AVR
core. Examples of such modules are the General Purpose Register File, the Status Reg-
ister and the data memory holding the Stack Pointer. Halting the CPU clock inhibits the
core from performing general operations and calculations.

The IO clock is used by the majority of the IO modules, like Timer/Counters, SPI, and
USART. The YO clock is also used by the External Interrupt module, but note that some
external interrupts are detected by asynchronous logic, allowing such interrupts to be
detected even if the IO clock is halted. Also note that address recognition in the TWI
module is carried out asynchronously when clk,, is halted, enabling TWI address recep-
tion in all sleep modes.

The Flash clock controls operation of the Flash interface. The Flash clock is usually
active simultaneously with the CPU clock.

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked
directly from an external 32 kHz clock crystal. The dedicated clock domain allows using
this Timer/Counter as a real-time counter even when the device is in sleep mode.

The ADC is provided with a dedicated clock domain. This allows halting the CPU and
IO clocks in order to reduce noise generated by digital circuitry. This gives more accu-
rate ADC conversion results.

Clock Sources

Default Clock Source

Crystal Oscillator

The device has the following clock source options, selectable by Flash Fuse bits as
shown below. The clock from the selected source is input to the AVR clock generatar,
and routed to the appropriate modules.

Table 2. Device Clocking Options Select!"

Device Clocking Option CKSEL3..0
External Crystal/Ceramic Resonator 1111 - 1010
External Low-frequency Crystal 1001
External RC Oscillator 1000 - 0101
Calibrated Internal RC Oscillator 0100 - 0001
External Clock 0ooo

Mote: 1. Forall fuses “1" means unprogrammed while “0° means programmed.

The various choices for each clocking option is given in the following sections. When the
CPU wakes up from Power-down or Power-save, the selected clock source is used to
time the start-up, ensuring stable Oscillator operation before instruction execution starts.
When the CPU starts from Reset, there is as an additional delay allowing the power to
reach a stable level before commencing normal operation. The Watchdog Oscillator is
used for timing this real-time part of the start-up time. The number of WDT Oscillator
cycles used for each time-out is shown in Table 3. The frequency of the Watchdog Oscil-
lator is voltage dependent as shown in “ATmega8535 Typical Characteristics” on page
266.

Table 3. Mumber of Watchdog Oscillator Cycles

Typ Time-out (V. = 5.0V) Typ Time-out (Vo = 3.0V) Number of Cycles
4.1 ms 4.3ms 4K (4,096)
65 ms 69 ms 64K (65,536)

The device is shipped with CKSEL = “0001" and SUT = “10". The default clock source
setting is therefore the Internal RC Oscillator with longest startup time. This default set-
ting ensures that all users can make their desired clock source setting using an In-
System or Parallel Programmer.

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can
be configured for use as an On-chip Oscillator, as shown in Figure 12. Either a quartz
crystal or a ceramic resonator may be used. The CKOPT Fuse selects between two dif-
ferent oscillator amplifier modes. When CKOPT is programmed, the Oscillator output
will oscillate will a full rail-to-rail swing on the output. This mode is suitable when operat-
ing in a very noisy environment or when the output from XTALZ2 drives a second clock
buffer. This mode has a wide frequency range. When CKOPT is unprogrammed, the
Oscillator has a smaller output swing. This reduces power consumption considerably.

This mode has a limited frequency range and it can not be used to drive other clock
buffers.

For resonators, the maximum frequency is 8 MHz with CKOPT unprogrammed and
16 MHz with CKOPT programmed. C1 and C2 should always be equal for both crystals
and resonators. The optimal value of the capacitors depends on the crystal or resonator
in use, the amount of stray capacitance, and the electromagnetic noise of the environ-
ment. Some initial guidelines for choosing capacitors for use with crystals are given in
Table 4. For ceramic resonators, the capacitor values given by the manufacturer should
be used.

Figure 12. Crystal Oscillator Connections

XTAL2

G2

1

0
S| xTALt

GND

The Oscillator can operate in three different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSEL3..1 as shown in

Table 4.

Table 4. Crystal Oscillator Operating Modes

Frequency Range Recommended Range for Capacitors
CKOPT | CKSEL3.4 {MHz) €1 and C2 for Use with Crystals (pF)
1 1012 0.4-09 -
1 110 0.9-3.0 12-22
1 111 3.0-8.0 12-22
0 101, 110, 111 1.0-16.0 12-22

2. This option should not be used with crystals, only with ceramic resonators.

The CKSELO fuse together with the SUT1..0 Fuses select the start-up times as shown in

Table 5.
Table 5. Start-up Times for the Crystal Oscillator Clock Selection
Start-up Time from | Additional Delay
Power-down and from Reset
CKSELO | SUT1..0 Power-save (Voo = 5.0V) Recommended Usage
o 0o 258 CKIM 4.1 ms Ceramic resonator, fast
rising power
0 01 258 Ck" 65 ms Ceramic resonator,
slowly rising power
0 10 1K CK® - Ceramic resonator, BOD
enabled
o 11 1K CK® 4.1 ms Ceramic resonator, fast
rising power
1 00 1K CK® 65 ms Ceramic resonator,
slowly rising power
1 o1 16K CK - Crystal Oscillator, BOD
enabled
1 10 16K CK 4.1 ms Crystal Oscillator, fast
rising power
1 11 16K CK 65 ms Crystal Oscillator, slowly
rising power
Motes: 1. These options should only be used when not operating close to the maximum fre-

quency of the device, and only if frequency stability at start-up is not important for the
application. These options are not suitable for crystals.

These options are intended for use with ceramic resonators and will ensure fre-
guency stability at start-up. They can also be used with crystals when not operating
close to the maximum frequency of the device, and if frequency stability at start-up is
not important for the application.

Low-frequency Crystal

Oscillator

External RC Oscillator

To use a 32.768 kHz watch crystal as the clock source for the device, the Low-fre-
guency Crystal Oscillator must be selected by setting the CKSEL Fuses to “1001". The
crystal should be connected as shown in Figure 12. By programming the CKOPT Fuse,
the user can enable internal capacitors on XTAL1 and XTAL2, thereby removing the
need for external capacitors. The internal capacitors have a nominal value of 36 pF.

When this Oscillator is selected, start-up times are determined by the SUT fuses as
shown in Table 6.

Table 6. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1..0 Power-save (Voo = 5.0V) Recommended Usage
00 1K CKl! 4.1 ms Fast rising power or BOD enabled
o1 1K CKM B5 ms Slowly rising power
10 32K CK 65 ms Stable frequency at start-up
1 Reserved

Mote: 1. These options should only be used if frequency stability at start-up is not important
for the application.

For timing insensitive applications, the external RC configuration shown in Figure 13
can be used. The frequency is roughly estimated by the equation f = 1/(3RC). C should
be at least 22 pF. By programming the CKOPT Fuse, the user can enable an internal
36 pF capacitor between XTAL1 and GND, thereby removing the need for an external
capacitor. For more information on Oscillator operation and details on how fo choose R
and C, refer to the External RC Oscillator application note.

Figure 13. Extermal RC Configuration

Veo
R NC — XTAL2
XTALA
C=
GND

The Oscillator can operate in four different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSEL3..0 as shown in
Table 7.

Table 7. External RC Oscillator Operating Modes

CKSEL3..0 Frequency Range (MHz)
0101 0.1-09
0110 0.9-3.0
o111 3.0-8.0
1000 8.0-12.0

When this Oscillator is selected, start-up times are determined by the SUT fuses as

shown in Table 8.

Calibrated Internal RC
Oscillator

Table 8. Start-up Times for the External RC Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SuUT1..0 Power-save (Voo = 5.0V) Recommended Usage
0o 18 CK - BOD enabled
01 18 CK 4.1 ms Fast rising power
10 18 CK 65 ms Slowly rising power
11 & CKI! 4.1 ms Fast rising power or BOD enabled

Mote: 1. This option should not be used when operating close to the maximum frequency of
the device.

The calibrated internal RC Oscillator provides a fixed 1.0, 2.0, 4.0, or 8.0 MHz clock. All
frequencies are nominal values at 5V and 25°C. This clock may be selected as the sys-
tem clock by programming the CKSEL Fuses as shown in Table 9. If selected, it will
operate with no external components. The CKOPT Fuse should always be unpro-
grammed when using this clock option. During Reset, hardware loads the calibration
byte into the OSCCAL Register and thereby automatically calibrates the RC Oscillator.
At 5Y, 25°C and 1.0 MHz Oscillator frequency selected, this calibration gives a fre-
quency within £ 3% of the nominal frequency. Using run-time calibration methods as
described in application notes available at www.atmel.com/avr it is possible to achieve
+1% accuracy at any given V.~ and Temperature. When this Oscillator is used as the
chip clock, the Watchdog Oscillator will still be used for the Watchdog Timer and for the
Reset Time-out. For more information on the pre-programmed calibration value, see the
section “Calibration Byte" on page 239,

Table 9. Intemnal Calibrated RC Oscillator Operating Modes

CKSEL3..0 Nominal Frequency (MHz)
00011 1.0
0010 2.0
0011 4.0
0100 8.0

Mote: 1. The device is shipped with this option selected.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 10. XTAL1 and XTALZ should be left unconnected (NC).

Table 10. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

Start-up Time from Power- | Additional Delay from
SUT1..0 down and Power-save Reset (V- = 5.0V) Recommended Usage
0o 6 CK = BOD enabled
01 & CK 4.1 ms Fast rising power
10M1 6 CK 65 ms Slowly rising power
11 Reserved

Mote: 1. The device is shipped with this option selected.

Oscillator Calibration Register
- OSCCAL

External Clock

Bit 7 6 5 4 3 2 1 0
| cal7 | caé | cals | cala | CAaLs | caLz | cali | calo | osccal

Read/Write Rt R RAW RW R R RW R

Initial Value Dewvice Specific Calibration Value

= Bits 7..0 — CAL7..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the Intemal Oscillator to remove pro-
cess variations from the Oscillator frequency. During Reset, the 1 MHz calibration value
which is located in the signature row high byte (address 0x00) is automatically loaded
into the OSCCAL Register. If the internal RC is used at other frequencies, the calibration
values must be loaded manually. This can be done by first reading the signature row by
a programmer, and then store the calibration values in the Flash or EEPROM. Then the
value can be read by software and loaded into the OSCCAL Reqister.

When OSCCAL is zero, the lowest available frequency is chosen. Writing non-zero val-
ues to this register will increase the frequency of the Internal Oscillator. Writing 0xFF to
the register gives the highest available frequency. The calibrated Oscillator is used to
time EEPROM and Flash access. If EEPROM or Flash is written, do not calibrate to
more than 10% above the nominal frequency. Otherwise, the EEPROM or Flash write
may fail. Note that the Oscillator is intended for calibration to 1.0, 2.0, 4.0, or 8.0 MHz.
Tuning to other values is not guaranteed, as indicated in Table 11.

Table 11. Internal RC Oscillator Frequency Range.

Min Freguency in Percentage of Max Frequency in Percentage of
OSCCAL Value Nominal Frequency (%) Nominal Frequency (%)
0x00 50 100
Ox7F 75 150
OxFF 100 200

To drive the device from an external clock source, XTAL1 should be driven as shown in
Figure 14. To run the device on an external clock, the CKSEL Fuses must be pro-
grammed to “0000". By programming the CKOPT Fuse, the user can enable an internal
36 pF capacitor between XTAL1 and GND.

Figure 14. External Clock Drive Configuration

NC ——— XTALZ2
EXTERMAL
cLock ———1 ATALA
SIGNAL

GND

-

When this clock source is selected, start-up times are determined by the SUT Fuses as
shown in Table 12.

Table 12. Start-up Times for the External Clock Selection

Start-up Time from Power- | Additional Delay from
SUT1..0 down and Power-save Reset (V. = 5.0V) Recommended Usage
0o 6 CK - BOD enabled
a1 6 CK 4.1ms Fast rising power
10 6 CK 65 ms Slowly rising power
1 Reserved

Timer/Counter Oscillator

Power Management
and Sleep Modes

MCU Control Register -

When applying an external clock, it is required to avoid sudden changes in the applied
clock frequency to ensure stable operation of the MCU. A variation in frequency of more
than 2% from one clock cycle to the next can lead to unpredictable behavior. It is
required to ensure that the MCU is kept in Reset during such changes in the clock
frequency.

For AVR microcontrollers with Timer/Counter Oscillator pins (TOSC1 and TOSC2), the
crystal is connected directly between the pins. No external capacitors are needed. The
Oscillator is optimized for use with a 32.768 kHz watch crystal. Applying an external
clock source to TOSC is not recommended.

Sleep modes enable the application to shut down unused modules in the MCU, thereby
saving power. The AVR provides various sleep modes allowing the user to tailor the
power consumption to the application's requirements.

To enter any of the six sleep modes, the SE bit in MCUCR must be written to logic one
and a SLEEP instruction must be executed. The SM2, SM1, and SMO bits in the
MCUCR Register select which sleep mode (ldle, ADC Moise Reduction, Power-down,
Power-save, Standby, or Extended Standby) will be activated by the SLEEP instruction.
See Table 13 for a summary. If an enabled interrupt occurs while the MCU is in a sleep
mode, the MCU wakes up. The MCU is then halted for four cycles in addition to the
start-up time, it executes the interrupt routine, and resumes execution from the instruc-
tion following SLEEP. The contents of the Register File and SRAM are unaltered when
the device wakes up from sleep. If a Reset occurs during sleep mode, the MCU wakes
up and executes from the Reset Vector.

Figure 11 on page 24 presents the different clock systems in the ATmega8535, and
their distribution. The figure is helpful in selecting an appropriate sleep mode.

The MCU Control Register contains control bits for power management.

MCUCR Bit 7 B 5 i 3 2 1 o
| sm= | s | swmi | swo | ISCi1 | ISCi0 | 1Scol | ISCo0 | MCUCR

Read/Write RAW RW RAW RW RAW RW RW RAW

Initial Value o 0 o o o o o o

Table 13. Sleep Mode Select

* Bits 7,5, 4 - SM2..0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the six available sleep modes as shown in Table 13.

SMm2 SM SMo Sleep Mode
o 1] Idle
0 1 ADC Moise Reduction
o] 1 o] Power-down
0 1 1 Power-save
1 0 1] Reserved
1 0 1 Reserved
1 1] Standby'
1 1 1 Extended Standby!"

Mote: 1. Standby mode and Extended Standby mode are only available with external crystals

or resonators.
= Bit 6 — SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the
SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is
the programmers purpose. it is recommended to write the Sleep Enable (SE) bit to one
just before the execution of the SLEEP instruction and to clear it immediately after wak-

ing up.

Idle Mode

ADC Noise Reduction
Mode

Power-down Mode

Power-save Mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter
Idle mode, stopping the CPU but allowing SPI, USART, Analog Comparator, ADC, Two-
wire Serial Interface, Timer/Counters, Watchdog, and the interrupt system to continue
operating. This sleep mode basically halts clkgzp and clkg sgy, while allowing the other
clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as
internal ones like the Timer Overflow and USART Transmit Complete interrupts. If
wake-up from the Analog Comparator interrupt is not required, the Analog Comparator
can be powered down by setting the ADC bit in the Analog Comparator Gontrol and Sta-
tus register — ACSR. This will reduce power consumption in Idle mode. If the ADC is
enabled, a conversion starts automatically when this mode is entered.

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter
ADC Noise Reduction mode, stopping the CPU but allowing the ADC, the External Inter-
rupts, the Two-wire Serial Interface address watch, Timer/Counter2 and the Watchdog
to continue operating (if enabled). This sleep mode basically halts clkyg, clkgp,, and clk-
rLacH. While allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measure-
ments. If the ADC is enabled, a conversion starts automatically when this mode is
entered. Apart from the ADC Conversion Complete interrupt, only an External Reset, a
Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface address match inter-
rupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an external level
interrupt on INTO or INT1, or an external interrupt on INT2 can wake up the MCU from
ADC Moise Reduction mode.

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter
Power-down mode. In this mode, the External Oscillator is stopped, while the External
Interrupts, the Two-wire Serial Interface address watch, and the Watchdog continue
operating (if enabled). Only an External Reset, a Watchdog Reset, a Brown-out Reset, a
Two-wire Serial Interface address match interrupt, an external level interrupt on INTO or
INT1, or an external interrupt on INT2 can wake up the MCU. This sleep mode basically
halts all generated clocks, allowing operation of asynchronous modules only.

Mote that if a level triggered interrupt is used for wake-up from Power-down mode, the
changed level must be held for some time to wake up the MCU. Refer to “External Inter-
rupts” on page 68 for details.

When waking up from Power-down mode, there is a delay from the wake-up condition
occurs until the wake-up becomes effective. This allows the clock to restart and become
stable after having been stopped. The wake-up period is defined by the same CKSEL
fuses that define the Reset Time-out period, as described in “Clock Sources” on page
25.

When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter
Power-save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is clocked asynchronously, i.e., the AS2 bit in ASSR is set,
Timer/Counter2 will run during sleep. The device can wake up from either Timer Over-
flow or Qutput Compare event from Timer/Counter2 if the corresponding
Timer/Counter2 interrupt enable bits are set in TIMSK, and the Global Interrupt Enable
bit in SREG is set.

If the asynchronous timer is MOT clocked asynchronously, Power-down mode is recom-
mended instead of Power-save mode because the contents of the registers in the

asynchronous timer should be considered undefined after wake-up in Power-save mode
if AS2is 0.

This sleep mode basically halts all clocks except clkygy, allowing operation only of asyn-
chronous modules, including Timer/Counter2 if clocked asynchronously.

Standby Mode When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected,
the SLEEP instruction makes the MCU enter Standby mode. This mode is identical to
Power-down with the exception that the Oscillator is kept running. From Standby mode,
the device wakes up in six clock cycles.

Extended Standby Mode When the SM2..0 bits are 111 and an external crystal/resonator clock option is selected,
the SLEEP instruction makes the MCU enter Extended Standby mode. This mode is
identical to Power-save mode with the exception that the Oscillator is kept running.
From Extended Standby mode, the device wakes up in six clock cycles.

Table 14. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock domains Oscillators Wake up sources
Main
Clock Timer INTZ2 Wi SPMS A
Sleep Source Osc IMT1 | Address | Timer | EEFROM | D | Other
Mode Clkgpy | Clkpasy | Clkg | Clkupe | Clkuey | Enabled | Enabled | INTO Match 2 Ready [o
ldle X X X X X# X X X X X X
ADC
Moise X X ® Wiz & X X X X
Reduction
PD\"I‘EF‘ 3
down X X
Power- X2 X2 N X x12)
save
Standby!" X X® *
Extended 2 2 (3 i2)
Standby!? X X X X X X

Motes: 1. External Crystal or resonator selected as clock source
2. If AS2 bit in ASSR is set
3. Only INTZ2 or level interrupt INT1 and INTO

